
4/2/2015 Writing shell scripts - Lesson 13: Flow Control - Part 3

http://linuxcommand.org/lc3_wss0130.php 1/8

Flow Control - Part 3
Now that you have learned about positional parameters, it is time to cover the remaining flow
control statement, for. Like while and until, for is used to construct loops. for works like
this:

for variable in words; do
 commands
done

In essence, for assigns a word from the list of words to the specified variable, executes the
commands, and repeats this over and over until all the words have been used up. Here is an
example:

#!/bin/bash

for i in word1 word2 word3; do
 echo $i
done

Validation failed. Please retry or wait till
W3C allows validation again

X

http://linuxcommand.org/lc3_man_pages/forh.html

4/2/2015 Writing shell scripts - Lesson 13: Flow Control - Part 3

http://linuxcommand.org/lc3_wss0130.php 2/8

In this example, the variable i is assigned the string "word1", then the statement echo $i is
executed, then the variable i is assigned the string "word2", and the statement echo $i is
executed, and so on, until all the words in the list of words have been assigned.

The interesting thing about for is the many ways you can construct the list of words. All kinds of
expansions can be used. In the next example, we will construct the list of words using command
substitution:

#!/bin/bash

count=0
for i in $(cat ~/.bash_profile); do
 count=$((count + 1))
 echo "Word $count ($i) contains $(echo -n $i | wc -c) characters"
done

Here we take the file .bash_profile and count the number of words in the file and the number
of characters in each word.

So what's this got to do with positional parameters? Well, one of the features of for is that it can
use the positional parameters as the list of words:

#!/bin/bash

4/2/2015 Writing shell scripts - Lesson 13: Flow Control - Part 3

http://linuxcommand.org/lc3_wss0130.php 3/8

for i in "$@"; do
 echo $i
done

The shell variable "$@" contains the list of command line arguments. This technique is often used
to process a list of files on the command line. Here is a another example:

#!/bin/bash

for filename in "$@"; do
 result=
 if [-f "$filename"]; then
 result="$filename is a regular file"
 else
 if [-d "$filename"]; then
 result="$filename is a directory"
 fi
 fi
 if [-w "$filename"]; then
 result="$result and it is writable"
 else
 result="$result and it is not writable"
 fi
 echo "$result"
done

4/2/2015 Writing shell scripts - Lesson 13: Flow Control - Part 3

http://linuxcommand.org/lc3_wss0130.php 4/8

Try this script. Give it a list of files or a wildcard like "*" to see it work.

Here is another example script. This one compares the files in two directories and lists which files
in the first directory are missing from the second.

#!/bin/bash

cmp_dir - program to compare two directories

Check for required arguments
if [$# -ne 2]; then
 echo "usage: $0 directory_1 directory_2" 1>&2
 exit 1
fi

Make sure both arguments are directories
if [! -d $1]; then
 echo "$1 is not a directory!" 1>&2
 exit 1
fi

if [! -d $2]; then
 echo "$2 is not a directory!" 1>&2
 exit 1
fi

Process each file in directory_1, comparing it to directory_2
missing=0
for filename in $1/*; do
 fn=$(basename "$filename")
 if [-f "$filename"]; then

4/2/2015 Writing shell scripts - Lesson 13: Flow Control - Part 3

http://linuxcommand.org/lc3_wss0130.php 5/8

 if [! -f "$2/$fn"]; then
 echo "$fn is missing from $2"
 missing=$((missing + 1))
 fi
 fi
done
echo "$missing files missing"

Now on to the real work. We are going to improve the home_space function in our script to output
more information. You will recall that our previous version looked like this:

home_space()
{
 # Only the superuser can get this information

 if ["$(id -u)" = "0"]; then
 echo "<h2>Home directory space by user</h2>"
 echo "<pre>"
 echo "Bytes Directory"
 du -s /home/* | sort -nr
 echo "</pre>"
 fi

} # end of home_space

Here is the new version:

4/2/2015 Writing shell scripts - Lesson 13: Flow Control - Part 3

http://linuxcommand.org/lc3_wss0130.php 6/8

home_space()
{
 echo "<h2>Home directory space by user</h2>"
 echo "<pre>"
 format="%8s%10s%10s %-s\n"
 printf "$format" "Dirs" "Files" "Blocks" "Directory"
 printf "$format" "----" "-----" "------" "---------"
 if [$(id -u) = "0"]; then
 dir_list="/home/*"
 else
 dir_list=$HOME
 fi
 for home_dir in $dir_list; do
 total_dirs=$(find $home_dir -type d | wc -l)
 total_files=$(find $home_dir -type f | wc -l)
 total_blocks=$(du -s $home_dir)
 printf "$format" $total_dirs $total_files $total_blocks
 done
 echo "</pre>"

} # end of home_space

This improved version introduces a new command printf, which is used to produce formatted
output according to the contents of a format string. printf comes from the C programming
language and has been implemented in many other programming languages including C++, Perl,
awk, java, PHP, and of course, bash. You can read more about printf format strings at:

GNU Awk User's Guide - Control Letters
GNU Awk User's Guide - Format Modifiers

http://linuxcommand.org/lc3_man_pages/printf1.html
http://www.gnu.org/software/gawk/manual/html_node/Control-Letters.html#Control-Letters
http://www.gnu.org/software/gawk/manual/html_node/Format-Modifiers.html#Format-Modifiers

4/2/2015 Writing shell scripts - Lesson 13: Flow Control - Part 3

http://linuxcommand.org/lc3_wss0130.php 7/8

We also introduce the find command. find is used to search for files or directories that meet
specific criteria. In the home_space function, we use find to list the directories and regular files
in each home directory. Using the wc command, we count the number of files and directories
found.

The really interesting thing about home_space is how we deal with the problem of superuser
access. You will notice that we test for the superuser with id and, according to the outcome of the
test, we assign different strings to the variable dir_list, which becomes the list of words for the
for loop that follows. This way, if an ordinary user runs the script, only his/her home directory will
be listed.

Another function that can use a for loop is our unfinished system_info function. We can build
it like this:

system_info()
{
 # Find any release files in /etc

 if ls /etc/*release 1>/dev/null 2>&1; then
 echo "<h2>System release info</h2>"
 echo "<pre>"
 for i in /etc/*release; do

 # Since we can't be sure of the
 # length of the file, only
 # display the first line.

 head -n 1 $i
 done
 uname -orp
 echo "</pre>"

http://linuxcommand.org/man_pages/find1.html

4/2/2015 Writing shell scripts - Lesson 13: Flow Control - Part 3

http://linuxcommand.org/lc3_wss0130.php 8/8

 fi

} # end of system_info

In this function, we first determine if there are any release files to process. The release files
contain the name of the vendor and the version of the distribution. They are located in the /etc
directory. To detect them, we perform an ls command and throw away all of its output. We are
only interested in the exit status. It will be true if any files are found.

Next, we output the HTML for this section of the page, since we now know that there are release
files to process. To process the files, we start a for loop to act on each one. Inside the loop, we
use the head command to return the first line of each file.

Finally, we use the uname command with the "o", "r", and "p" options to obtain some additional
information from the system.

© 2000-2015, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium,
provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

mailto:bshotts@users.sourceforge.net
http://linuxcommand.org/lc3_man_pages/uname1.html
http://linuxcommand.org/lc3_man_pages/head1.html

